22 research outputs found

    Asymptotic behaviour in temporal logic

    Get PDF
    International audienceno abstrac

    On optimal entanglement assisted one-shot classical communication

    Full text link
    The one-shot success probability of a noisy classical channel for transmitting one classical bit is the optimal probability with which the bit can be sent via a single use of the channel. Prevedel et al. (PRL 106, 110505 (2011)) recently showed that for a specific channel, this quantity can be increased if the parties using the channel share an entangled quantum state. We completely characterize the optimal entanglement-assisted protocols in terms of the radius of a set of operators associated with the channel. This characterization can be used to construct optimal entanglement-assisted protocols from the given classical channel and to prove the limit of such protocols. As an example, we show that the Prevedel et al. protocol is optimal for two-qubit entanglement. We also prove some simple upper bounds on the improvement that can be obtained from quantum and no-signaling correlations.Comment: 5 pages, plus 7 pages of supplementary material. v2 is significantly expanded and contains a new result (Theorem 2

    Robust Multidimensional Mean-Payoff Games are Undecidable

    Full text link
    Mean-payoff games play a central role in quantitative synthesis and verification. In a single-dimensional game a weight is assigned to every transition and the objective of the protagonist is to assure a non-negative limit-average weight. In the multidimensional setting, a weight vector is assigned to every transition and the objective of the protagonist is to satisfy a boolean condition over the limit-average weight of each dimension, e.g., \LimAvg(x_1) \leq 0 \vee \LimAvg(x_2)\geq 0 \wedge \LimAvg(x_3) \geq 0. We recently proved that when one of the players is restricted to finite-memory strategies then the decidability of determining the winner is inter-reducible with Hilbert's Tenth problem over rationals (a fundamental long-standing open problem). In this work we allow arbitrary (infinite-memory) strategies for both players and we show that the problem is undecidable

    Games on graphs with a public signal monitoring

    Full text link
    We study pure Nash equilibria in games on graphs with an imperfect monitoring based on a public signal. In such games, deviations and players responsible for those deviations can be hard to detect and track. We propose a generic epistemic game abstraction, which conveniently allows to represent the knowledge of the players about these deviations, and give a characterization of Nash equilibria in terms of winning strategies in the abstraction. We then use the abstraction to develop algorithms for some payoff functions.Comment: 28 page

    Kleene Algebras and Semimodules for Energy Problems

    Get PDF
    With the purpose of unifying a number of approaches to energy problems found in the literature, we introduce generalized energy automata. These are finite automata whose edges are labeled with energy functions that define how energy levels evolve during transitions. Uncovering a close connection between energy problems and reachability and B\"uchi acceptance for semiring-weighted automata, we show that these generalized energy problems are decidable. We also provide complexity results for important special cases

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    Bell Correlations and the Common Future

    Full text link
    Reichenbach's principle states that in a causal structure, correlations of classical information can stem from a common cause in the common past or a direct influence from one of the events in correlation to the other. The difficulty of explaining Bell correlations through a mechanism in that spirit can be read as questioning either the principle or even its basis: causality. In the former case, the principle can be replaced by its quantum version, accepting as a common cause an entangled state, leaving the phenomenon as mysterious as ever on the classical level (on which, after all, it occurs). If, more radically, the causal structure is questioned in principle, closed space-time curves may become possible that, as is argued in the present note, can give rise to non-local correlations if to-be-correlated pieces of classical information meet in the common future --- which they need to if the correlation is to be detected in the first place. The result is a view resembling Brassard and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure

    Church Synthesis Problem for Noisy Input

    Full text link
    Abstract. We study two variants of infinite games with imperfect in-formation. In the first variant, in each round player-1 may decide to hide his move from player-2. This captures situations where the input signal is subject to fluctuations (noises), and every error in the input signal can be detected by the controller. In the second variant, all of player-1 moves are visible to player-2; however, after the game ends, player-1 may change some of his moves. This captures situations where the input signal is subject to fluctuations; however, the controller cannot detect errors in the input signal. We consider several cases, according to the amount of errors allowed in the input signal: a fixed number of errors, finitely many errors and the case where the rate of errors is bounded by a threshold. For each of these cases we consider games with regular and mean-payoff winning conditions. We investigate the decidability of these games. There is a natural reduction for some of these games to (perfect infor-mation) multidimensional mean-payoff games recently considered in [6]. However, the decidability of the winner of multidimensional mean-payoff games was stated as an open question. We prove its decidability and provide tight complexity bounds.

    Librarians learning from librarians: Networking and learning intersect at the Huddersfield Librarian TeachMeet

    Get PDF
    An overview of the librarian TeachMeet held at the University of Huddersfield, February 201
    corecore